Section 4.4

The Fundamental Theorem of Calculus: If a function f is continuous on the closed interval $[a, b]$ and F is an antiderivative of f on the interval $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

1) Evaluate each definite integral.
a) $\int_{0}^{2}\left(2 x^{3}+1\right) d x$
b) $\int_{1}^{3} \frac{x-1}{\sqrt{x}} d x$
c) $\int_{0}^{\pi / 6} \sec x \tan x d x$
d) $\int_{0}^{4}|2 x-4| d x$
2) Find the area of the region bounded by the graph of $y=3 x^{2}-2 x+1$, the x-axis, the y-axis, and the vertical line $x=2$.

The Mean Value Theorem for Integrals: If f is continuous on the closed interval $[a, b]$, then there exists a number c in the closed interval $[a, b]$ such that

$$
\int_{a}^{b} f(x) d x=f(c)(b-a)
$$

Definition of the Average Value of a Function on an Interval: If f is integrable on a closed interval $[a, b]$, then the average value of f on the interval is

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

$3)$ Find the average value of $f(x)=9-x^{2}$ on the interval $[-3,3]$.
4) Evaluate the function $F(x)=\int_{0}^{x} t^{2} d t$ at $x=0,1,2$, and 3 .

The Second Fundamental Theorem of Calculus: If f is continuous on an open interval I containing a, then, for every x in the interval,

$$
\frac{d}{d x}\left[\int_{a}^{x} f(t) d t\right]=f(x)
$$

5) Evaluate $\frac{d}{d x}\left[\int_{1}^{x} \sqrt[3]{t^{3}+1} d t\right]$.
6) Find the derivative of $F(x)=\int_{0}^{x^{3}} \sin t^{2} d t$.

Homework for this section: Read the section and watch the videos/tutorials. Then do these problems in preparation for the quiz: \#22, 27, 37, 41, 48, 55, 70, 77, 83, 89

